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Short Papers

Stokes Phenomenon in the Development of
Microstrip Green’s Function and Its Ramifications

Deb Chatterjee and Richard G. Plumb

Abstract-In this paper we examine the effect of truncating an infinite
asymptotic series for the Hankel function used in microstrip antenna
calculations. In particular, the accuracy of this truncated asymptotic
expansion of the Hankel function is examined from a numerical viewpoint.
This expansion has been used in the literature to obtain closed-form
expressions for the microstrip Green’s function for subsequent use in
calculating mutual coupttng between elements in a microstrip array.
In this paper, we show that truncating the asymptotic series for the
Hankel function could lead to severe unexpected errors for those values
of the argument where tbe asymptotic expansion is normally expected to
be vatid. This is known as the Stokes phenomenon and has generally
remained obscure in the literature. Since the large argument of the
Hankel function is shown to he related to the lateral separation between
two antennas, the results presented here have a particular bearing
iu calculating mutual coupting between widely separated elements in
electrically large microstrip arrays.

I. INTRODUCTION

Mutual coupling between microstrip elements usually involves

evaluation of Sommerfeld integrals for both source and observer
points on the same plane. To facilitate efficient calculation of mutual

coupling, closed-form (asymptotic) representations of the Sommer-
feld integrals involving Hankel functions were obtained by employing
its asymptotic form [1]. Furthermore, it has been reported recently
that such formulations can predict and identify many physical effects
that were not possible using exact techniques [2]. In [2] it is
shown that mutual coupling between widely sepmated elements
decayed quasiperiodically and that it could also become numerically

significant at such lateral separations. This implied that accurate
quantification of mutual coupling is important in such cases. The
formulation in [1] is efficient in calculating mutual coupling between

widely separated elements. The subject of this paper is to investigate
the limitations of such formulations that have been obtained via
approximations.

Large-argument representations of cylinder functions are routinely
used for numerical calculations [3]. Emphasizing the effects of prob-
able numerical errors resulting from truncating the infinite asymptotic
series for the Hankel function [4], [5] is the major purpose of this pa-
per. Such errors, resulting from truncated asymptotic expansions, are
due to Stokes phenomenon [6]–[8]. Unfortunately, this phenomenon
does not seem to have been reported or analyzed extensively in the
literature. Consequently it appears relevant to illustrate this specific

problem with applications to calculating mutual coupling between

micro strip antennas.

The scope of the results presented here is general in nature. The

conclusions presented are relevant to practical problems involving

cylinder functions for large, complex arguments. The present discus-

sion refers to mutual coupling problems in microstrip antennas studied
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earlier [2], [9]. The Stokes phenomenon can also arise, however, in
other situations [10].

Section II illustrates the general features of the Stokes phenomenon
in connection with the microstrip antenna problem. Section III
contains some numerical results and suggestions for future research
into this area. A summary of this work is provided in Section IV.

II. ANALYSIS OF THE PROBLEM

It is well known [4] that the microstrip Green’s function is

expressed in terms of Sommerfeld integrals that contain in their
integrands the Hankel function ff~z) (z ). In [1, (59)] a simple residue

series form for the microstrip Green’s function has also been obtained

in terms of H~2) (z )—the complex argument

PZ=p ko –/3p. (1)

In (1) ,6P is the surface or leaky wave pole location, kO is the
free-space wavenumber, and p is the lateral separation between

the two antennas. When kop + GO, : + m in (l), and hence
one employs the asymptotic form of H$z) (z ) [3], [5] to compute
the residue series representation of the microstnp Green’s function.
The mutual impedance is directly proportional to this residue [2]
and hence depends on the numerical accuracy of this asymptotic
expansion. Truncations of infinite asymptotic expansions lead to
numerical inaccuracies as investigated in general in [8]. This aspect
is elaborated below.

If an analytic function ~(z) of a complex variable z, expressed as
a suitably defined contour integral, yields an asymptotic expansion
as z -+ zo, then it is possible to write the following infinite series

[6, p. 21]:

(2)

valid in some domain A in which c + zo. In (2) co could be a saddle
point [4], [6]-[8] that maybe close to some other singularity of f( z)
like poles or branch points. In (2) {V. } is an asymptotic sequence
and {C. } is a sequence of complex coefficients.

For all practical applications, the infinite sum in (2) is generally

truncated to a finite number of terms, assuming that the remainder
becomes exponentially small as z + CO, AS shown in [8, Chs. 21,

22], across certain lines passing through z = Z. this remainder sud-
denly becomes exponentially large, rendering the finite (or truncated)
representation of (2) inaccurate for all practical calculations. This is
a manifestation of the Stokes phenomenon and the lines (or rays)
through z = zo are called Stokes lines. It has also been shown that
there exists an optimal number of terms, n, for a given value of z
[8]. This optimal number yields the best possible truncation of the
infinite asymptotic series, so that it is numerically superior to other
possible truncations.

To illustrate the effect of truncations on an asymptotic expansion,

calculation of cylinder functions is considered. The Stokes phenom-
enon for cylinder functions is demonstrated by calculation of the
Wronskian in the following section.
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III. NUMERICALRESULTSAND DISCUSSION

The standard definition of the Hankel function for integer order m
and complex argument z is given in the relation [5, p. 358]

m (3)H(2)(2) = Jm(z) – jYm(2).

As suggested in [3], for Iz I >> m, the Hankel asymptotic expansions
for J~ (z), Y~ (z) can be used. These read from [5, p. 364] as

and

Yin(2) =
r

&[P(m, z)siny+Q(m, ~)cm X] (5)

where the ‘tincated expressions for the infinite series for
P(rn, z), Q(m, z) read from [5, p. 364] as

P(rn, z) & 1 and (6)

(7)

In (4)-(7) x = z – (mrr/2 + 7r/4) and ~ = 4 x m2. The accuracy

of calculating (3) thus depends on (4) and (5) for IZI >> m. To check
the accuracy of (4) and (5) the well-known Wronskian relationship
[5, p. 360, (9.1.16)]

.Jm+,(%)xm(2) – .Jm(z)Ym+l(2)

= Jm(z)YA(z) – J?L(3)Ym(z) = : (8)

can be used. The asymptotic forms for the derivatives J&(z), Y~ (z )
are given in [5] and are

c
J~(z) = – A[R(wz) sin x + S(m, z) COSI] (9)

The terms I?(m, z) and S(m. z) in (14) and (15) are also truncated
from their infinite asymptotic series and read from [5, p. 365, (9.2.15)

and (9.2.16)] as

R(m,:) R 1 and (11)

(12)

Equations (4)–( 12) are valid for \z I ~ cc and hence are formally

asymptotic [6]. The accuracy of the truncation of @2) (z) for z + C=
was computed from the Wronskian check based on (8). Truncation
type 1 corresponds to results obtained via (6), (7), (11), and (12), and
the results shown here correspond to this specific truncation.

The relative error resulting in calculating the Wronskian in (8)
was determined for various values of z and integer orders of m. This
error (in %) is determined by

(13)

where W. is the Wronskian based on (4)–( 10) and W, = 2/TZ is its
exact value. The results are shown in Figs. 1 and 2. In these figures
z = Iz Ie)$ where 0 is the phase of the complex argument in degrees.
Equation (13) provides a simple yet rigorous check for demonstrating
the Stokes phenomenon arising due to truncations in P, Q, R, and S

1 —..
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Fig. 1. Comparison of relative errors m the Wronskian at Izl = 100CIand
for different orders of m = O,1, and 2.
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Fig. 2. Comparison of relative errors in the Wronskian at IZI = 1000 and
for m = O.

for z -+ m. All the computations were done using double-precision

complex arithmetic in FORTRAN-77.

In Fig. 1 for all cases of m = 0.1, and 2 and Izl = 1.000,

the relative error increases with increasing d. The data shown here

indicate that the errors could be severe for higher orders. For instance,

at 0 H 1°, the errors are about 10% for m = 1 and 2, while at m = 0

they are about 5%. As O increases, J rotates in the complex plane
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for a fixed value Iz I = 1000. This rotation causes z to approach the
Stokes lines, which are near O = 1“. It is seen that for all orders the
relative errors are maximum near this region. In Fig. 2, comparisons
between truncation 1 and exact results are shown. The Wronskian
computations were done for m = 0, corresponding to rI = O. The
results clearly indicate that the truncation is subject to errors.

For commonly used practical microstrip configurations, the relation

(14)

is well known [2]. Here d is the substrate thickness, e, is the relative
permittivity, and L is the electrical length. This will excite one TM

surface- and one TE leaky-wave pole [1]. For G. = 4, we find from
[9, Fig. 4] that &/ko N 2.7 – j8.O. Substituting these values in (1)
we get

~ ~ ~~ ~~~e+]l 89

“A”
(15)

As shown in [2, Figs. 1, 2, 5, 6], lateral separations of p > 20J
are not uncommon in designing large arrays. Setting p = 20A in
(18) gives Iz I & 1067. One can conclude from Figs. 1 and 2 that

truncations in the asymptotic series for @2)(Z), for Iz I 2 1000, can
be subject to increased numerical errors.

Our results indicate that the Stokes phenomenon could eventually
dictate the accuracy of computing the mutual coupling for medium
or large microstrip arrays. Techniques such as the Borel summation
formula [8, pp. 405-408] appear applicable although much work

remains to be done in the future.

IV. SUMMARY

In this paper we have studied the effects of truncations of the
infinite asymptotic series for the Hankel function that appears in
the Sommerfeld integral for the microstrip Green’s function. For
large values of the complex argument z, such truncated expansions
can be inaccurate. This inaccuracy is a manifestation of the Stokes
phenomenon that depends both on the magnitude and phase of the
complex argument 2, which depends on the substrate geometry and

the lateral separation between antennas. When z tends to a transition
(or distinguished) point Z,, certain rays in the complex z plane are
crossed, across which the truncated asymptotic expansion is no longer
analytically continuable; these are called Stokes lines. This leads to
numerical inaccuracies that may manifest themselves in calculating
mutual coupling between widely separated elements in a microstrip
array. It has been found numerically that for Iz I > 1000 the Stokes
phenomenon manifests itself when the Green’s function is computed;
hence, the mutual coupling between microstrip antennas. This value
generally corresponds to the dimensions of a medium-sized array
for electrically thin substrates with relatively low permittivities. To

rectify the Stokes phenomenon the Borel summation formula may
be used, but its application to the asymptotic evaluation of the
Sommerfeld integral remains a challenging topic for future research.
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A Fast Algorithm for Computing Field Radiated by an
Insulated Dipole Antenna in Dissipative Medium

Lin-Kun Wu, David Wen-Feng Su, and Bin-Chyi Tseng

Abstract-A fast algorithm for determining the near-field character-
istics of an insnlated dipole antenna (IDA) embedded in a homogenons
dissipative medinm is described in this paper. A thin-wire-approximation
type of analysis is followed here. In thk case, radiation is considered to
originate from a filamentary current flowing along the axis of the dipole,
which is snrronnded immediately hy the ambient dissipative medium.
The translational symmetry inherent in the resnltant radiation integrals
is then exploited to speed np the computation. In one case stud]ed, the
basic thin-wire approach that uses no symmetry property is found to
yield accurate results in approximately 380 times less CPU time than
the traditional King-Casey approach. In another case, use of symmetry
property further reduces the CPU time by a factor of 7; additional
reduction in CPU time is possible by taking into account the near-field
nature of the problem.

I. INTRODUCTION

Analysis of the near field characteristics of an insulated dipole
antenna (IDA) is fundamental in the design and evaluation of
the heating performance of art interstitial microwave hyperthermia
system. For the field computation purpose, IDA’s may be classified as
being either uniformly or nonuniformly insulated. In this paper, a fast
computing algorithm will be developed explicitly for the uniformly
insulated IDA’s shown in Fig. 1, and extension to the nonuniformly
insulated IDA’s will also be described.

Two types of analysis have been employed in the past. In the
King-Casey analysis of the symmetrically fed, uniformly insulated
IDA shown in Fig. l(a) [1], [2], the IDA is first treated as a lossy
transmission line while determining the antenna input impedance and
equivalent electric and magnetic current sources present over the
exterior surface of the insulating catheter. The latter are then used
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